Electricidad Básica

"En el verdadero éxito, la suerte no tiene nada que ver; la suerte es para los improvisados y aprovechados; y el éxito es el resultado obligado de la constancia, de la responsabilidad, del esfuerzo, de la organización y del equilibrio entre la razón y el corazón". Lic. CARAZAS QUISPE Edgar

domingo, 27 de marzo de 2011

Origen de la Electricidad

Un hecho real es que todo objeto se compone de átomos y cada átomo posee igual número de electrones y protones
La electricidad o energía eléctrica se produce porque la materia se puede cargar eléctricamente. ¿Qué significa esto?

Veamos: los electrones poseen una carga negativa y los protones una carga positiva. Estas cargas se contrarrestan unas a otras para que el objeto resulte neutro (no cargado). Pero al frotar, por ejemplo, un globo sobre un polerón los electrones saltan del polerón al globo y éste se carga de electricidad. El globo pasa a tener más electrones que protones y se carga negativamente; mientras el polerón, con más protones que electrones, se carga positivamente.

¿Qué ha pasado? Hemos producido electricidad
Ahora bien, la electricidad se puede trasmitir de un punto a otro conduciéndola a través de distintos objetos o materiales.

Todos los cuerpos pueden trasmitir energía eléctrica, pero existen unos que son mejores trasmisores de energía eléctrica (conductores, como los metales) que otros, a los cuales les cuesta más o simplemente no permiten el paso de ella (aisladores o malos conductores).

Para generar energía eléctrica necesitamos de motores eléctricos, pilas, generadores, los cuales hacen que se pueda cargar un objeto y así poder transferir la electricidad.

Los efectos de la electricidad son múltiples y en la actualidad, conocidos y controlados, se ocupan para muchos usos.
Magnético (Electroimanes)
Mecánico (Motores)
Químico (Electrólisis)
Luminosos
Calóricos
Sin embargo, a lo largo de la historia, el hombre ha atribuido explicaciones de carácter místico o religioso a determinados fenómenos naturales como el rayo, los fuegos de San Telmo o la piedra imán.

Los primeros descubrimientos de los cuales se tiene noticia en relación con los fenómenos eléctricos, fueron realizados por los griegos en la Antigüedad. El filósofo y matemático Tales de Mileto en el siglo V antes de Cristo observó que un trozo de ámbar, después de ser frotado con una piel de animal, adquiría la propiedad de atraer cuerpos ligeros (como trozos de paja y pequeñas semillas).William Gilbert

Tuvieron que pasar varios siglos antes de que William Gilbert publicara en 1600 su obra De Magnete, en la que realiza el primer estudio científico del magnetismo. Este científico observó que algunos otros cuerpos se comportan como el ámbar al frotarlos, y que la atracción que ejercen se manifiesta sobre cualquier otro cuerpo, aun cuando no sea ligero.

Como la designación griega que corresponde al ámbar es elektron, Gilbert comenzó a usar el término “Eléctrico” para referirse a todo cuerpo que se comportaba como el ámbar, con lo cual surgieron las expresiones “Electricidad”, “Electrizar”, “Electrización”, etc...

Éste fue el punto de partida de la historia de la electricidad, cuyo estudio y desarrollo durante los siglos XVII y XVIII se limitó únicamente a los fenómenos electrostáticos. Ya en la época moderna surgieron los gabinetes de física y con ellos los primeros modelos de máquinas eléctricas, fuentes productoras de grandes cantidades de carga eléctrica.

Desde que Otto von Guericke construyó en la segunda mitad del siglo XVII su máquina eléctrica, primer ingenio de estas características, son numerosos los modelos y diseños que los diferentes investigadores llevaron a la práctica con éxito.

Dos investigadores aportaron una contribución esencial a la electrostática: Stephen Gray (1670-1736) descubrió la electrización por influencia (por frotamiento) y la conductividad eléctrica; por su parte, Du Fay (1698-1739) reveló la existencia de dos electricidades de diferentes naturalezas, que llamó “resinosa” (negativa) y “vítrea” (positiva). Un discípulo suyo, el abate Nollet (1700-1770), se hizo famoso popularizando experimentos de electrostática: hacía que las chispas crepitaran en los salones de la alta sociedad, donde las damas hacían cola para ser electrizadas por el abate. El entusiasmo se desbordó cuando apareció el primer condensador eléctrico, capaz de almacenar la misteriosa energía: una simple botella con agua con tapón atravesado por un clavo, la Botella de Leiden. Este dispositivo parece haber sido inventado simultáneamente, en 1745, por Ewald G. von Kleist (1700-1748) y Petrus van Musschenbrock (1692-1761), profesor de la Universidad de Leiden.

Años después, en el siglo XVIII Benjamín Franklin, un científico norteamericano, propuso una teoría para explicar los fenómenos eléctricos que se derivaban del frotamiento. Cuando se frota una sustancia como el vidrio, dicho cuerpo gana “fluido eléctrico” y queda cargado positivamente (+). En el caso del ámbar, pierde “fluido eléctrico” y queda cargado negativamente (-). Franklin fue, entonces, el primero en hablar de cuerpos cargados positiva y negativamente. La explicación actual del fenómeno se basa en la Teoría atómica de la materia. Los electrones –partículas cargadas negativamente– giran alrededor del núcleo del átomo, específicamente en la corteza o envoltura del átomo. El átomo puede ganar o perder electrones. Si pierde electrones su carga será positiva, por pérdida de partículas negativas; si gana electrones, su carga será negativa, por ganancia de partículas negativas.

El electrón fue descubierto por Joseph J. Thomson.

En el siglo XIX aparece una nueva forma de electricidad. Alessandro Volta consiguió en 1800, gracias a su pila, producir corrientes eléctricas de manera continua. Éste es el origen de la electrodinámica, con el que se abre todo un mundo de experiencias. En 1820 Hans Christian Oersted demostró experimentalmente la relación entre electricidad y magnetismo. Es en este momento cuando surgen las primeras nociones acerca del electromagnetismo, cuyo desarrollo ha permitido algunos de los mayores avances tecnológicos de la humanidad.

El ovoide prolongado es un aparato de metal que sirve para mostrar la distribución de la carga eléctrica en su superficie; el electroscopio de Volta, de gran importancia en la historia de la electricidad, se trata de un dispositivo utilizado para estudiar los mecanismos de adquisición de carga eléctrica en los distintos cuerpos; en el granizo eléctrico observamos cómo la conexión de dos placas metálicas a una diferencia de potencial causa el revoloteo de unas pequeñas bolitas de médula de saúco; el campanario eléctrico se vale de un efecto similar al anterior para hacer que dos bolitas golpeen una campana en un proceso continuo de carga-repulsión/descarga-atracción; el efecto eléctrico en puntas demuestra la acumulación de cargas en los extremos de los objetos metálicos, lo que ocasiona el giro de las aspas al ionizar el aire de su entorno.

La generación de carga eléctrica en abundancia se consigue por medio de las máquinas electrostáticas, con las que se conseguían diferencias de potencial suficientes para efectuar determinados experimentos.

Para almacenar la electricidad producida por estas máquinas se contaba con las botellas de Leiden, cuya forma varió a lo largo del tiempo. Otro sistema de almacenamiento de carga eléctrica era el condensador de Aepinus.

El estudio de la electricidad pronto trajo consigo la observación de las "chispas". Cuando dos conductores a diferente potencial se situaban a corta distancia, era posible hacer saltar una chispa entre ambos. Existen distintos aparatos que hacen uso de esta propiedad con finalidades diferentes.

El excitador de Henley se utilizaba para estudiar los efectos de las descargas eléctricas en objetos, seres vivos incluidos, colocados entre los dos conductores; el perforador de tarjetas se utilizaba para un fin análogo: se colocaba un naipe o una tarjeta entre los dos conductores, de manera que al saltar la chispa, la tarjeta quedaba perforada; el termómetro de Kinnersley permitía probar el desprendimiento de calor en las chispas; el cuadro mágico y la pirámide centelleante son ejemplos de juegos científicos de carácter experimental: en ambos casos las descargas producían efectos visuales y la formación de figuras brillantes.
Los tubos de Geissler consisten, por lo general, en un fino tubo de cristal que contiene un gas enrarecido en su interior. Al producirse una descarga de alta tensión, tienen lugar diversos efectos radiantes, dependiendo del gas y la presión a la que esté sometido. Algunos de estos tubos están coloreados y producen efectos ópticos especialmente llamativos.

William Crookes, al igual que Geissler, empleaba condiciones de vacío y descargas de alta tensión en tubos de vidrio. Sus experimentos le llevaron a identificar la naturaleza eléctrica de los rayos catódicos, fuente de otro tipo de radiación completamente distinta, a la que Röntgen denominó rayos X, debido a su carácter desconocido. Röntgen los descubrió accidentalmente al observar un haz de electrones (radiación catódica) que incidía en la superficie de vidrio de un tubo de descarga.

La necesidad de controlar la corriente eléctrica llevó a la creación de las cajas de resistencias, que permitían controlar la intensidad de la corriente. El reóstato de Wheatstone es una resistencia variable que hace uso de la buena conducción eléctrica de unas piezas gruesas de metal.

La medida de la corriente eléctrica se realiza utilizando fenómenos eléctricos y magnéticos. El multiplicador de Schweigger es una aplicación de la experiencia de Oersted, en la cual una aguja imanada es desviada por una corriente. Es el primer galvanómetro de la historia, ya que el ángulo de desviación está relacionado con la intensidad de la corriente. Los demás galvanómetros son instrumentos similares, pero más precisos y probablemente más complejos.

Si con la pila de Volta y otros generadores como el de Faraday se conseguía corriente continua, ahora la corriente alterna podía conseguirse con las máquinas magnetoeléctricas, como por ejemplo la de Gramme.
El movimiento de unas bobinas en un campo magnético fijo induce una corriente alterna, que puede utilizarse como tal o transformarse en corriente continua con facilidad. El transformador de corriente alterna nace de la necesidad de transportar energía eléctrica a grandes distancias. Desde los primeros aparatos destinados a elevar la tensión como la bobina de Ruhmkorff o el resonador de Oudin, antecesores de los actuales transformadores, este tipo de instrumentos han sufrido no pocas modificaciones, si bien en esencia su funcionamiento se basa en los mismos principios que llevaron a Michael Faraday a enunciar, en 1832, su ley de la inducción.

En la actualidad sabemos que todas las sustancias pueden presentar un comportamiento similar al del ámbar; es decir, pueden electrizarse al ser frotadas con otra sustancia. Por ejemplo, una regla de plástico se electriza cuando la frotamos con seda y puede atraer una bolita de “plumavit”; un peine se electriza cuando se le frota contra el cabello y luego puede atraer a éste, o bien, a un hilo de agua; la ropa de nailon también se electriza al friccionarse con nuestro cuerpo; los automóviles en movimiento adquieren electrización por su rozamiento con el aire, etc...
Hoy la electricidad se define como un flujo continuo de electrones a través de un conductor.

Importancia de la electricidad
La electricidad, junto con el vapor, ha sido un gran agente de transformación en la industria y en el comercio. A fines del siglo XIX se transformó en una fuente de luz, de calor y de fuerza motriz, dando origen, junto con el empleo del petróleo, a un impulso de la industria tan considerable que se ha dicho que en la última parte del siglo XIX, el mundo experimentó una segunda revolución industrial.

El invento de la dínamo-eléctrica, que transforma el trabajo mecánico en energía eléctrica, fue el acontecimiento más importante. Poco después se combinó esto con el aprovechamiento de las caídas de agua (energía hidroeléctrica).

La electricidad ha hecho posible el telégrafo (1833), después el teléfono (1876) y, posteriormente, la telegrafía y la telefonía sin hilos, con la trasmisión de la palabra. El sabio alemán Gauss sacó de los descubrimientos teóricos de Ampere y de Aragó la telegrafía eléctrica. El primer aparato práctico fue construido en Estados Unidos por Morse; el aparato y su alfabeto todavía son de uso universal. El teléfono fue inventado por el francés Bourseul, un empleado de telégrafos; pero no fue utilizado, sino mucho más tarde (1876), gracias al norteamericano Graham Bell. (Ver Cronología de la electricidad)

Desde 1836 Inglaterra y Estados Unidos empezaron a construir su red telegráfica.

Más tarde se inventó la telefonía sin hilos, que no tardó en industrializarse y ser usada en la vida diaria, disminuyendo las distancias y poniendo rápidamente en comunicación a todas las personas de nuestro planeta.

Y suma y sigue.
Resultaría monumental la tarea de seguir describiendo los avances hasta el momento en materia de electricidad o de sus posteriores aplicaciones tecnológicas. Pero no sería exagerar si dijéramos que la civilización actual volvería a un estado primitivo de no existir el conocimiento de esta forma de energía. Imagine su propia vida sin electricidad. Desde ya no habría luz eléctrica, ni teléfono o cualquier modo de comunicación a distancia que no sea la imprenta. No habría computadoras, ni cine. Tampoco automóviles porque para ello se necesitó del paso de la pistola de Volta, precursor de las bujías. La medicina retrocedería a sus orígenes, sin rayos X, resonancia magnética, ecografías, etc. El mundo de la alimentación sufriría un gran embate sin la refrigeración. Sin satélites de comunicación ni computadoras la meteorología sería incapaz de predecir huracanes o fenómenos como la Corriente del Niño. Si no hay automóviles, tampoco habrá máquinas de construcción. ¿Habría edificios, puentes, túneles? Tal vez muy pocos. Es verdad, no tendríamos que vernos con los problemas que acarrearon estos avances. ¿Pero, a qué precio?

Imagine un mundo así. No se trata de ver si ese mundo sería mejor o peor, eso es muy difícil de evaluar, tan solo se trata de notar la diferencia.

Obtención de la electricidad
La electricidad se obtiene a gran escala a través de las Centrales Hidroeléctricas o Termoeléctricas, fuente de energía térmica (combustibles, geotermia, energía solar, energía nuclear) o energía mecánica (energías eólica, hidráulica, mareomotriz), la cual acciona unos aparatos motores, por ejemplo, turbinas. Las turbinas, acopladas a alternadores, convierten su energía mecánica en energía eléctrica, que luego es distribuida a la red. En la actualidad, las únicas instalaciones de gran potencia son las centrales termoeléctricas (que funcionan con combustibles como carbón, petróleo o gas) y las centrales hidroeléctricas (que funcionan por la fuerza de la caída de aguas en las grandes represas o los caudales de ríos).